

High Performance Embedded Computing Conference 2002:

From PIM to Petaflops Computing

MIND: Scalable Embedded Computing through Advanced Processor in Memory

Thomas Sterling

California Institute of Technology and NASA Jet Propulsion Laboratory September 24, 2002

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 21 MAY 2003	2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
From PM to Petaflops Computing, MIND: Scalable Embedded Computing through Advanced Processor in Memory				5b. GRANT NUMBER	
Computing unrough Advanced Frocessor in Memory				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) California Institute of Technology and NASA Jet Propulsion Laboratory				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.			
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	36	RESI ONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Summary of Mission Driver Factors

- Speed of light preclude real time manual control
- Mission duration and spacecraft lifetime up to 100 years
- Adaptivity to system and environmental uncertainty through reasoning
- Cost of ground based deep space tracking and high bandwidth downlink
- Weight and cost of space craft high bandwidth downlink
 - Antennas, Transmitter, Power supply
 - Raw power source
 - Maneuver rockets and/or inertial storage, Mid course main engine thrusters
 - Launch vehicle fuel and type
- On-board science computation
- On-board mission planning (long term and real time)
- On-board mission fault detection, diagnostic, and reconfiguration
- Obstructed mission profiles

Goals for a New Generation of Spaceborne Supercomputer

- Performance gain of 100 to 10,000
- Low power, high power efficiency.
- Wide range for active power management.
- Fault tolerance and graceful degradation.
- High scalability to meet widely varying mission profiles.
- Common ISA for software reuse and technology migration.
- Multitasking, real time response.
- Numeric, data oriented, and symbolic computation.

Processor in Memory (PIM)

- PIM merges logic with memory
 - Wide ALUs next to the row buffer
 - Optimized for memory throughput, not ALU utilization
- PIM has the potential of riding Moore's law while
 - greatly increasing effective memory bandwidth,
 - providing many more concurrent execution threads,
 - reducing latency,
 - reducing power, and
 - increasing overall system efficiency
- It may also simplify programming and system design

Why is PIM Inevitable?

- Separation between memory and logic artificial
 - von Neumann bottleneck
 - Imposed by technology limitations
 - Not a desirable property of computer architecture
- Technology now brings down barrier
 - We didn't do it because we couldn't do it.
 - We can do it so we will do it
- What to do with a billion transistors
 - Complexity can not be extended indefinitely
 - Synthesis of simple elements through replication
 - Means to fault tolerance, lower power
- Normalize memory touch time through scaled bandwidth with capacity
 - Without it, takes ever longer to look at each memory block
- Will be mass market commodity commercial market
 - Drivers outside of HPC thrust
 - Cousin to embedded computing

Current PIM Projects

- IBM Blue Gene
 - Pflops computer for protein folding
- UC Berkeley IRAM

Attached to conventional servers for multi-media

- USC ISI DIVA
 - Irregular data structure manipulation
- U of Notre Dame PIM-lite
 - Multithreaded
- Caltech MIND
 - Virtual everything for scalable fault tolerant general purpose

Limitations of Current PIM Architectures

- No global address space
- No virtual to physical address translation
 - DIVA recognizes pointers for irregular data handling
- Do not exploit full potential memory bandwidth
 - Most use full row buffer
 - Blue Gene/Cyclops has 32 nodes
- No memory to memory process invocation
 - PIM-lite & DIVA use *parcels* for method driven computation
- No low overhead context switching
 - BG/C and PIM-lite have some support for multithreading

MIND Architecture

- ◆ Memory-Intelligence-and-Networking Devices
- Target systems
 - Homogenous MIND arrays
 - Heterogeneous MIND layer with external high-speed processors
 - Scalable embedded
- Addresses challenges of:
 - global shared memory and virtual paged management
 - irregular data structure handling
 - dynamic adaptive on-chip resource management
 - inter-chip transactions
 - global system locality and latency management
 - power management and system configurability
 - fault tolerance

Attributes of MIND Architecture

- Parcel active message driven computing
 - Decoupled split-transaction execution
 - System wide latency hiding
 - Move work to data instead of data to work
- Multithreaded control
 - Unified dynamic mechanism for resource management
 - Latency hiding
 - Real time response
- Virtual to physical address translation in memory
 - Global distributed shared memory thru distributed directory table
 - Dynamic page migration
 - Wide registers serve as context sensitive TLB
- Graceful degradation for Fault tolerance

MIND Mesh Array

Diagram - MIND Chip Architecture

MIND Node

Unified Register Set Supports a Diversity of Runtime Mechanisms

- Node status word
- Thread state
- Parcel decoding
- Parcel construction
- Vector register
- Translation Lookaside Buffer
- Instruction cache
- Data cache
- Irregular Data Structure Node (data, pointers, usw.)

MIND Node Instruction Set

- Basic set of word operations
- Row wide field permutations for reordering and alignment
- Data parallel ops across row-wide register and delimited subfields
- Parallel dual ops with key field and data field for rapid associative searches
- Thread management and control
- Parcel explicit create, send, receive
- Virtual and physical word access; local, on-chip, remote
- Floating point
- Reconfiguration
- Protected supervisor

Multithreading in PIMS

- MIND must respond asynchronously to service requests from multiple sources
- Parcel-driven computing requires rapid response to incident packets
- Hardware supports multitasking for multiple concurrent method instantiations
- High memory bandwidth utilization by overlapping computation with access ops
- Manages shared on-chip resources
- Provides fine-grain context switching
- Latency hiding

Single HWT: Multiple Memory Banks: MultiThread

probability of reg-to-reg instr fixed at 0.7 probability of data cache hit fixed at 0.9 Memory access fixed at 70 cycles

PIM Parcel Model

- Parcel: logically complete grouping of info sent to a node on a PIM chip
 - by SPELLs, other PIM nodes
- At arrival, triggers local computation:
 - Read from local memory
 - Perform some operation(s)
 - Write back locally (optional)
 - Return value to sender (optional)
 - Initiate additional parcel(s) (optional)

PIM Node Architecture

Virtual Page Handling

- Pages preferentially distributed in local groups with associated page entry tables
- Directory table entries located by physical address
- Pages may be randomly distributed within MIND chip or group
- Pages may be randomly distributed requiring second hop from page table location
- Supervisor address space supports local node overhead and service tasks.
- Copying to physical pages, not to virtual
- Demand paging to/from backing store or other MIND chips
- Nodes directly address memory of others on same MIND chip

Fault Tolerance

- Near fine-grain redundancy provides multiple alike resources to perform workload tasks.
- Even single-chip Gilgamesh (for rovers, sensor webs) will incorporate 4-way to 16-way redundancy and graceful degradation.
- Hardware architecture includes fault detection mechanisms.
- Software tags for bit-checking at hardware speeds; includes constant memory scrubbing.
- Monitor threads for background fault detection and diagnosis
- Virtual data and tasks permits rapid reconfiguration without software regeneration or explicit remapping.

System Availability as Function Of Number of Faults Before Node Failure MTBF = 1 unit Exponential Arrival Rate of Faults 64 Modules 4 Nodes/Module

Real Time Response

- Multiple nodes permits dedication of a single node to a single real time task
- Threads and pages can be nailed down for real time tasks
- Multithreading uses real time priority for guaranteed reaction time
- Preemptive memory access
- Virtual address translation can be buffered in registers as TLB
- Hardwired signal lines from sensors and to actuators

Power Reduction Strategy

- Objective: achieve 10 to 100 reduction in power over conventional systems of comparable performance.
- On-chip data operations avoids external I/O drivers.
- Number of memory block row accesses reduced because all row bits available for processing.
- Simple processor with reduced logic. No branch prediction prediction, speculative execution, complex scoreboarding.
- No caches.
- Power management of separate processor/memory nodes.

Earth Simulator

Architectures

Cascade Node

Roles for PIM/MIND in Cascade

- Perform in-place operations on zero-reuse data
- Exploit high degree data parallelism
- Rapid updates on contiguous data blocks
- Rapid associative searches through contiguous data blocks
- Gather-scatters
- Tree/graph walking
- Enables efficient and concurrent array transpose
- Permits fine grain manipulation of sparse and irregular data structures
- Parallel prefix operations
- In-memory data movement
- Memory management overhead work
- Engage in prestaging of data for MTV/HWT processors
- Fault monitoring, detection, and cleanup
- Manage 3/2 memory layer

Speedup Smart Memory Over Dumb Memory for Various LWT Clock Rates 64 Smart Memory Nodes

FPGA-based Breadboard

- FPGA technology has reached million gate count
- Rapid prototyping enabled
- MIND breadboard
 - Dual node MIND module
 - Each node
 - 2 FPGAs
 - 8 Mbytes of SRAM
 - External serial interconnect for parcels
 - Interface to other on-board node
- Test Facility
 - Rack of four cages
 - Each cage with eight MIND modules
- Alpha boards near completion (4)
- Beta board design waiting next generation parts

MIND Prototype

